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Abstract 
 
A statistical physics description of company decisions has been developed in which modifications 
due to random behavior of the traditional economics description of a production function. are 
displayed.  In this statistical physics description, unit production cost plays the role usually 
occupied by energy.  The associated temperature is related to the maturity and  degree of 
bureaucracy prevalent in the system   
 
A partition function factor arises naturally that weights regions of high company concentration.  
From this partition function, analogues to free energy, statistical physics forces, entropy, and 
other statistical physics quantities can be defined. 
 
In the model, the effect of technology transfer is exhibited by the conservation law describing 
how a change in the total production cost is related to both the change in the unit cost of 
production resulting from the action of the statistical physics force of technology transfer, and to 
the change in the entropy of the system brought about by technology transfer.   
 
A natural explanation of a productivity paradox in which expenditures for information technology 
transfer can actually result in a transient increase in total production cost,  arises from the relative 
magnitudes of the force and entropy terms in the conservation law. 
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1.  Introduction  

Technology transfer has been touted for many years as a cost effective means of 
improving company  competitiveness.  Several reasons have been given for this.  For 
example, Krugman at Princeton posits that market responsive private firms are not the 
best source of knowledge (and by inference, new technology).  Firms that innovate have a 
difficult time in capturing all the revenue streams that can be generated by the 
knowledge.  This tends to cause private firms to have a disincentive for knowledge 
creation and sharing.  In order to reduce times to market,  firms are forced to look outside 
their own firm for intellectual property (IP) that can be licensed and incorporated into 
new products faster than it can be invented.  Krugman posits that public institutions 
operate under a set of incentives that tend to foster knowledge creation and sharing.  The 
knowledge creation in these institutions occurs outside the influence of market influence.  
The public goods stored in the tens of thousands of active patents sitting on the shelves of 
federally funded research institutions in the United States are still a large untapped source 
of knowledge.  This occurs at a time when business environments have become 
hypercompetitive because of the high magnitude and velocity of interfirm rivalries 
[D'aveni, (1994)].  
 
Knowledge transfer can be difficult in a time when innovations in products, services, business 
processes and organizational designs are creating dramatic discontinuities in product market 
spaces and disrupting the traditional approaches to competitive strategies and business conduct 
[Christensen (1997)].  New “sense and respond strategies” are emerging in managerial 
thinking [Bradley (1998)].  These new strategies recognize the value of industry clusters and 
their complex adaptive abilities to extended entrepreneurship to a global scale.  IT driven 
industry clusters could be ideal for the “sense and respond” approaches [Bradley (1998)].  The 
development of new frameworks to explore the optimal use of IT in these strategies is 
underway.    The problem of managing intellectual capital and transferring knowledge in the 
information age is a challenge with no precedent [Teece (1998)].  

The purpose of this paper is to explore the impact of technology transfer from a systematic, 
quantifiable,  and non-anecdotal point of view.  This is done by developing a statistical physics 
model for company behavior.  Analogues can be developed in the economic realm for 
conventional statistical physics parameters.  For example, analogues can be developed for free 
energy, entropy, thermodynamic forces, partition functions, etc.  In the statistical physics of 
company behavior, the role of energy can be played by the unit cost of production. 

It is also possible to consider the analogue to the familiar conventional thermodynamics 
conservation law that relates changes in internal energy to work and the change in entropy.  
We shall see below that for technology  transfer to companies, the corresponding conservation 
law in the economics realm relates changes in total production cost to the action of a uniquely 
defined statistical physics force of technology transfer and to a change in effective entropy.  
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This conservation law enables us to systematically describe the effects of technology transfer 
on a system of companies in terms of measurable parameters. 

The statistical physics framework is summarized in Section 2.    The conservation law for 
changes in the statistical physics parameters is derived in Section 3.  The results for 
technology transfer are discussed in Section 4.  

2. Statistical physics framework 

There has been a long-term association between economics and thermodynamics.  This 
association can be found in both neoclassical economics and modern new growth economics. 
Krugman [1996] points out that economics is based on physics, and one of his favorite 
examples is that of the thermodynamics of economics.  Even systems far from economic 
equilibrium can be treated by (open system) thermodynamics [Thome and London (2000)]. 

Costanza, Perrings and Cleveland [1997] argue that two very different fields of science 
initially drove the development of new growth economic models: thermodynamics and 
biology. The interdisciplinary new growth (ecological) economic theories provide IT and 
knowledge transfer with a promising framework.  .   

According to Smith and Foley [2002] both neoclassical economics and classical  
thermodynamics seek to describe natural systems in terms of solutions to constrained  
optimization problems.    
 
The formalism of statistical physics may be found in several good texts:  in this paper we 
follow closely the succinct development in Feynman & Hibbs (1965). 
 
It is straightforward to develop a thermodynamic-like statistical physics description of   
company behavior based on a constrained maximum likelihood approach.  So as not to  
obscure the basic ideas, some  simplifying approximations can be made: 
 

1. The existence of different types of companies and different types of company 
outputs are ignored.  For example, the different types of companies in a value-
added chain within an industry  cluster is not addressed.   

2. The total production at a given location is assumed to be proportional to the 
number of [the same size] companies at that location.  

3. The production costs are not divided up between labor, materials, and capital, but 
rather the results are based on a spatially-dependent single production cost per 
unit produced. 

4. A simplified single factor scale invariant Cobb-Douglas production function is 
assumed, in which the production output of a company is proportional to the total 
cost of production. 

5. Saturation and zoning effects are ignored. 
6. A static situation is assumed [i.e. all time variations are ignored]. 
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With these assumptions, the derivation of the statistical physics framework proceeds in a 
straightforward manner: 
 
Begin  by dividing up the landscape in and around a metropolitan area into a number of 
cells.  For instance, each cell might consist of the land within a given zip code.  Label 
each cell by “i”, where we assume that i runs from i = 0 to some large number NT 

 
Assign to each cell a cost function C(i) that indicates the cost to produce one unit of 
production output. 
 
Denote by n(i) the number of units produced in some standard length of time, [e.g. in a 
year]  in the ith cell.   
 
Characterize the metropolitan area and its surroundings by the total costs incurred in the 
same length of time,  
 
 C(total) = ∑ C(i)n(i)        [1] 
 
and by the total number of units produced in that time, 
 
 N(total) = ∑  n(i)         [2] 
 
where in both eqs. [1] and [2] the summation is from i = 0 to i = NT. 
With the foregoing assumptions, we now ask what the most likely distribution of 
production is over the cells, assuming that we know what the total number of units 
produced, N(total), is, and what the total cost of producing those units, C(total), is. 
 
The N(total) units are produced by n(1) units in cell number 1, n(2) units in cell number 
2, etc. In the standard approach of statistical physics, the probability of a given 
distribution n(i), i = 0, …, NT, is determined by maximizing the number of ways in which 
the N(total) can be obtained given the distribution n(i), subject to the fact that both 
N(total) and C(total) are known. 
 
The number of ways that N(total) can be arranged is N(total)!  However, not all of these 
ways are consistent with the assumed distribution n(i).  The number of ways n(i) can be 
arranged is n(i)!  and each of these is equivalent as far as counting the number of ways 
that N(total) can be arranged.  Thus, the total number of allowable ways that N(total) can 
be arranged subject to an assumed distribution n(i) is: 
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 P[N(total), n(i)] = N(total)! / [ n(1)!n(2)! … n(NT!] 
     = N(total)! / ∏ n(i)!      [3] 
 
where the ∏ in the denominator denotes the product of all the n(i)!’s.  To deal with a sum 
rather than the product, we form 
 
 ln {P[N(total), n(i)]} =  ln{N(total)!} - ∑ ln{n(i)!}    [4] 
 
Assuming that n(i) is large, Stirling’s approximation can be used for the logarithm of a 
factorial: 
 
 ln{n!} =>  n ln{n}- n => n ln{n}      [5] 
 
Thus,  
 
 ln {P[N(total), n(i)]} => N(total) ln{N(total)} - ∑ n(i) ln{n(i)}  [6] 
 
The most likely distribution of n(i) will be that for which ln{P[N(total), n(i)]} has a 
maximum, i.e. for which the derivatives d ln{P[N(total), n(i)]}/dn(i) = 0.  However, we 
must also take into account the constraints of eqs.[1] and [2].  This can be done by 
introducing Lagrange multipliers α and β to form 
 
 F(n(i)) = ln {P[N(total), n(i)]}- α [ ∑ n(i) - N(total) ]   -  β[∑ C(i)n(i) – C(total)] 
           [7] 
 
Then, on setting  
 
 dF(n(i)) /dn(i) = 0        [8] 
 
we find as the condition for a maximum of ln {P[N(total), n(i)]} subject to the constraints 
of eqs. [1] and [2]: 
 
 - ln{n(i)}-1 - α - β C(i) = 0       [9] 
 
Solving eq. 91] for n(i), we find 
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 n(i) = A exp[-βC(i)]        [10] 
 
where  
 
 A = exp[- (1+α)]        [11] 
 
is an undetermined constant. 
 
Equation [10] for n(i) has the familiar Maxwell-Boltzmann form of thermodynamics, and 
from that form we can construct several economic analogues of conventional 
thermodynamic quantities:   
 
“Energy” and “temperature”  
 
 Thus, 

C(i), the cost required to produce 1 unit in the ith cell,  plays the role of an 
“energy” for the ith cell 

 β plays the role of 1/ kBT  
 
Here,  kB is Boltzmann’s constant and T  designates an effective “temperature”.  
   
The quantity β can also be interpreted as a “bureaucratic factor” that is related to how 
risk-averse a particular industry sector is.  Thus, a high β sector is a very bureaucratic 
sector, whereas a low β sector is less bureaucratic and less risk averse.  Low β firms have 
market agility advantages and might be expected to reside in areas of low firm density to 
minimize the cost of congestion and offset low economies of scale.   In Applegate’s 
[1996] classification of firms based on environment stability and organizational 
complexity.  high β firms would require the  highly stable markets and would be  capable 
of handling large amounts of complexity.   
 
Partition function   
Continuing with the statistical physics analogy, the constant A can be written in terms of 
N(total) and a “ partition function”  
 
 Z = ∑ exp[-βC(i)]        [12] 
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Since N(total) = ∑  n(i), we find on substituting eqs. [10] and [11],  
 
 A = N(total)/Z         [13] 
 
Helmholtz “free energy” 
 
Carrying the statistical physics analogy even further, a “free energy” F can be introduced 
by the equation 
 
 exp[- βF] = Z          [14] 
 
so that 
 
 A = N(total) exp[ βF]         [15] 
 
In terms of F, we see from eqs. [1] and [2] that 
 
 C(total) =  - ∂Z /∂β  = F exp[- βF]      [16] 
 
The average value of C(i) can be expressed in terms of F: 
 
 <C(i)> = ∑ C(i) exp[-β{C(i) – F}]      [17] 
 
But we see from eq. [12] that 
 
 ∑ C(i) exp[-βC(i)] = - ∂Z / ∂β       [18] 
 
and on using eq. [14] in eqs. [17] and [18], we find 
 
 <C(i)> = ∂(βF) / ∂β        [19] 
 
Entropy 
 
It is also possible to define an entropy 
 



 

 8

 S = - ∂F / ∂T = kBβ2∂F/∂β       [20] 
 
where the last equality arises from the relation β = 1/ kBT.   In terms of S, we can write 
 
 <C(i)> = F +TS        [21] 
 
“Forces”  
 
Finally, suppose that by varying some parameter ξ, it is possible to change C(i).  
Designate the rate of change of C(i) with respect by ξ by ∂C(i)/∂ξ .  Then a “force” can be 
defined by weighting ∂C(i)/∂ξ by the occupancy of the ith cell: 
 
 f(ξ) = ∑ ∂C(i)/∂ξ exp[-βC(i)]/Z      [22] 
 
This can in turn be written 
 
 f(ξ) = - (1/β)∂{lnZ}/∂ξ       [23] 
i.e. 
 f(ξ) = ∂F/∂ξ         [24] 
 
 
For example, suppose that ξ is a measure of technology transfer.  Then eq. [24] defines a 
“force” that acts on the system associated with technology transfer.  This will be explored 
more in the next Section. 
. 
The correspondences between the foregoing company behavior statistical physics 
quantities and the familiar statistical physics parameters in conventional thermodynamics 
is summarized in Table 1 below. 
 
       Table 1.  Comparison of Statistical Quantities in Physics and in Companies 
 

Variable   Physics   Companies 
 
State (i)  Hamiltonian eigenfunction  Production site 
Energy   Hamiltonian eigenvalue Ei    Unit production cost Ci 

Partition function Z  ∑exp[-(1/kBT)Ei]  ∑exp[-βCi] 
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Free energy F   kBT lnZ   (1/β) lnZ 
Generalized force fξ          ∂F/∂ξ    ∂F/∂ξ 
 Example  Pressure   Technology 
 Example  Electric field x charge  Knowledge 
Entropy (randomness)  - ∂F / ∂T    kBβ2∂F/∂β 

 
In the next Section, we shall examine relations between changes in the thermodynamic 
quantities to see how technology transfer can affect the total production output. 
 
3.  Conservation law for changes in statistical physics parameters 
In conventional statistical physics,  changes in the total energy of a system  are related to 
work done by the system on its surroundings and to the change in the entropy of the 
system.  Thus, denoting by U the total internal energy of the system,  and by S = - ∂F / ∂T 
the system’s entropy, we have the conservation law: 
 
 dU = TdS - <fξ > dξ        [25] 
 
where  <fξ > is the average over all the sites of the system of the statistical physics force fξ 
. 
The second term represents the work done by the system on its surroundings.  For 
example, when the force <fξ >is the pressure P, and ξ is the volume V, eq. [25] becomes 
the familiar conservation law 
 
 dU = TdS - PdV         [26] 
 
To derive the corresponding conservation law for the statistical physics of company 
behavior, start with the expression for the total production cost C of a system: 
 
 C= ∑ C(i)n(i)          [27] 
 
From the equations developed in Section 2, this can be written 
 

C = ∑ C(i) exp [-β(C(i) – F)]       [28] 
 

Now consider a change dξ in a parameter ξ in the system, keeping the temperature (and 
therefore  β) constant.  [For example, ξ can denote the technology used in the system, so 
that dξ represents technology transferred to the system.]  Then, in general, eq. [28] shows 
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that there will be a change in total production costs dC due to corresponding changes in 
C(i) and F.   
 
 dξC= Σ dξC(i) exp[-β(C(i) – F)] +βdξF∑ C(i) exp [-β(C(i) – F)] – 
    β Σ C(i) dξC(i) exp[-β(C(i) – F)]    [29] 
 
In this equation, we have designated the change in C due to the change in the parameter ξ 
with β constant specifically with a subscript ξ on the differential. 
 
The first term on the right hand side is simply - <fξ > dξ .  This represents the work done 
by  the system with the average force <fξ >. 
From the relations developed in Section 2, the second two terms on the right hand side of 
eq. [29] can be written  
 
     βdξF∑ C(i) exp [-β(C(i) – F)] – β Σ C(i) dξC(i) exp[-β(C(i) – F)] = β [∂2F/ ∂β∂ξ] dξ 
           [30] 
 
i.e. eq. [29] can be rewritten as 
 

 dξC =  - <fξ > dξ + β [∂2F/ ∂β∂ξ] dξ      [31] 
 
 
Equation [31] gives the change in the system’s total production costs due to a change in 
the parameter ξ when β is held constant.   
In general, when  the system is in contact with another system [e.g. one from which it 
expects to reap the benefits of technology transfer], the temperature (and β) of the system 
can also change.  Accordingly, the total change in the production cost C is  
 
 dC = dξC + dβC        [32] 
 
where the second term in this expression denotes the change in C due to a change in β 
without a change in ξ.   Specifically, since we can write from the relations derived in 
Section 2, 
 

 C = ∂ [βF]/ ∂β         [33] 
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 dβC= [∂2[βF]/ ∂β2] dβ        [34] 
 
On combining eqs. [31]-[34] we find for the total change in production costs 
 
 dC = - <fξ > dξ + β [∂2F/ ∂β∂ξ] dξ + [∂2[βF]/ ∂β2] dβ    [35] 
 
Equation [35] is the desired conservation equation corresponding to eq. [25] for 
conventional statistical physics.  The first term on the right hand side describes the 
“work” done by the system and the second term represents the “heat” exchange 
associated with a change in the system’s entropy.  Indeed, using the relations summarized 
in Table 1, eq. [35] for the statistical physics of company behavior may be rewritten in 
the same form as eq. [25}: 
 
 dC = - <fξ > dξ + TdS        [36] 
 
4.  Implications for technology transfer 
 
In terms of the  statistical physics model developed in Section 2 and the conservation law 
derived in Section 3, there are two basic ways in which knowledge transfer and 
information technology can impact overall production costs: 
 
4a.  Reduction in unit cost of production 
The first is the familiar possible reduction in unit production costs [the first term in the 
conservation relation of eq. (36)].  If the new technology does indeed reduce the unit cost 
of production, then the first term in the conservation equation is negative.  The term by 
itself would then contribute to a decrease in total production costs. 
It is possible, on the other hand, that the transfer of new technology to a company can 
increase the unit cost of production.  Hopefully, this would be a transient effect.  But the 
initial investment in transferring and incorporating the new technology in production 
lines could indeed result in a transient productivity paradox in which the total cost of 
production is impacted in just the opposite way to that desired. 
 
4b.  Change in system entropy 
The second way in which technology transfer can impact total production costs is in the 
change it can introduce into a system’s entropy.   The second term in the conservation 
equation, eq. [36], describes the consequences of heat flow into and out of the system. 
In a strict heat flow analogy, if the system’s temperature (degree of randomness) is larger 
than that of the surroundings from which it is hoping to transfer technology, then contact 
with the sources of technology  might be expected to lower the temperature of the system 
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– i.e. to decrease the entropy of the system.  This would then contribute to a lower overall 
production cost for the system.  On the other hand, if the technology sources have a 
higher temperature than the system of interest, then technology transfer could in fact 
increase the temperature:  the entropy term would then tend to increase overall 
production costs.  Whether or not it would is determined by the relative magnitudes of the 
two terms in the conservation relation – i.e. on whether an increase in system temperature 
is large enough to overcome the hoped-for reduction in unit production costs. 
 
It is not clear how valid a strict interpretation of “heat flow” in the thermodynamics of 
company behavior is.  A priori, it is difficult to relate the parameter β to technology 
transfer, except to say that introduction of new technologies does have a “noise” aspect to 
it, in that old systems are disrupted.  Thus, it might be expected that the effective 
temperature for young companies is larger than for mature, well established companies, 
and that the temperature is higher for companies based on newer transferred technology 
rather than on older technologies. 
 
As an example, it was found in comparing the temperatures of the semiconductor sector 
in the four counties comprising the Los Angeles consolidated metropolitan statistical  
area  for the years 1992 and 1997, that the temperature actually decreased as time 
progressed.  Expenditures for information and new technology in this sector were 
relatively high in the period between the two data samples.   It appeared that the 
temperature actually decreased as the industry matured. 
 
5.  Conclusion 
 
The statistical physics approach of this paper provides a systematic framework for 
analyzing the effects of technology transfer.  The two effects identified make intuitive 
sense:  on the one hand, technology transfer can lower the unit costs of production, and 
on the other hand, technology transfer can cause a broader distribution of unit production 
costs.  It is interesting that the formalism shows that the two effects can have opposite 
consequences for the overall cost of production in a sector, and that this might a cause of 
the productivity paradox that has been cited often in theliterature. 
 
It is clear that much more can be done with the statistical physics model of company 
behavior.  It will be interesting to apply it as a framework for analyzing the effectiveness 
of past government technology transfer programs, since it does provide quantifiable 
measures in both the cost and entropic realms. 
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